@ -1019,7 +1019,41 @@
& = \int \limits _ 0^ 1 x*x dx + \int \limits _ 1^ 2 x * \frac { 3} { 14} x^ 2 dx\\
& = \left [ \frac13*x^3 \right] _ 0^ 1 + \left [ \frac{3}{56} x^4 \right] _ 1^ 2\\
& = \frac 13 * 1 - \frac 13 * 0 + \frac { 3} { 56} * 2^ 4 - \frac { 3} { 56} * 1\\
& = \frac 13 -0 + \frac { 48} { 56} -\frac { 3} { 56} = \frac { 191} { 168}
& = \frac 13 -0 + \frac { 48} { 56} -\frac { 3} { 56} = \frac { 191} { 168} \\ [5mm]
\sigma ^ 2 & = \int \limits _ { -\infty } ^ \infty x^ 2 * f(x) dx - \mu ^ 2\\
& = \int \limits _ 0^ 1 x^ 2 * x dx + \int \limits _ 1^ 2 x^ 2 * \frac { 3} { 14} * x^ 2 dx - \left (\frac { 191} { 168} \right )^ 2\\
\end { align*}
\bsp Exponentialverteilung: \( f ( x ) = \begin { cases } \lambda * e ^ { - \lambda * x } , & x \ge 0 \\ 0 , & x< 0 \end { cases } \)
\begin { align*}
\mu & = \int \limits _ { -\infty } ^ \infty x * f(x) dx = \int \limits _ 0^ \infty x*\lambda * e^ { -\lambda * x} dx\\
& = \lambda * \int \limits _ 0^ \infty \underbrace { x} _ { u} * \underbrace { e^ { -\lambda * x} } _ { v'} dx\\
& = \lambda * \left ( \left [ -\frac{x}{\lambda} * e^{-\lambda*x} \right] _ 0^ \infty - \int \limits _ 0^ \infty -\frac 1\lambda * e^ { -\lambda * x} \, dx \right )\\
& = \lambda * \left ( 0 - \left [ \frac{e^{-\lambda*x}}{\lambda^2} \right] _ 0^ \infty \right )\\
& = \lambda * \left ( - \left ( \frac { e^ { -\infty } } { \lambda ^ 2} - \frac { e^ 0} { \lambda ^ 2} \right ) \right )\\
& = \lambda * \frac { 1} { \lambda ^ 2} \\
& = \frac 1\lambda
\end { align*}
\bsp Gleichverteilung: \( f ( x ) = \begin { cases } \frac { 1 } { b - a } , & a \le x \le b \\ 0 , & \text { sonst } \end { cases } \)
\begin { align*}
\mu & = \int \limits _ { -\infty } ^ \infty x * f(x) \, dx = \int \limits _ a^ b x * \frac { 1} { b-a} \, dx \\
& = \left [ \frac{x^2}{2} * \frac{1}{b-a} \right] _ a^ b\\
& = \frac { b^ 2} { 2(b-a)} - \frac { a^ 2} { 2(b-a)} \\
& = \frac { b^ 2-a^ 2} { 2(b-a)} \\
& = \frac { (b-a)*(b+a)} { 2 * (b-a)} \\
& = \frac { a+b} { 2}
\end { align*}
\subsection { Normalverteilung}
\begin { mydef}
$ X $ ist $ N ( \mu , \sigma ) $ verteilt, wenn $ X $ die Dichtefunktion \( f ( x ) = \frac { 1 } { \sqrt { 2 \pi } * \sigma } * e ^ { - \frac 12 * \left ( \frac { x - \mu } { \sigma } \right ) ^ 2 } \) besitzt.\\
Es gilt: \( E ( X ) = \mu , Var ( X ) = \sigma ^ 2 \) \\
\( \rightarrow X \) heißt \underline { standardnormalverteilt} , wenn \( \mu = 0 , \sigma = 1 \rightarrow f ( x ) = \frac { 1 } { \sqrt { 2 \pi } } * e ^ { - \frac 12 x ^ 2 } \) \\
Zugehörige Verteilungsfunktion \( F ( x ) = \phi ( x ) = \phi _ { 0 , 1 } ( x ) \rightarrow \) hierfür: \underline { Tabellenwerte}
\end { mydef}
\end { document}